编写软件过程中,程序员面临着来自耦合性,内聚性以及可维护性,可扩展性,重用性,灵活性等多方面的
挑战,设计模式是为了让程序(软件)

设计模式的目的

1) 代码重用性 (即:相同功能的代码,不用多次编写)
2) 可读性 (即:编程规范性, 便于其他程序员的阅读和理解)
3) 可扩展性 (即:当需要增加新的功能时,非常的方便,称为可维护)
4) 可靠性 (即:当我们增加新的功能后,对原来的功能没有影响)
5) 使程序呈现高内聚,低耦合的特性
分享金句:
6) 设计模式包含了面向对象的精髓,“懂了设计模式,你就懂了面向对象分析和设计(OOA/D)的精要”
7) Scott Mayers 在其巨著《Effective C++》就曾经说过:C++老手和 C++新手的区别就是前者手背上有很多伤疤

设计模式七大原则

设计模式原则,其实就是程序员在编程时,应当遵守的原则,也是各种设计模式的基础(即:设计模式为什么
这样设计的依据)

设计模式常用的七大原则有:

1) 单一职责原则
2) 接口隔离原则
3) 依赖倒转(倒置)原则
4) 里氏替换原则
5) 开闭原则
6) 迪米特法则
7) 合成复用原则

【单一职责原则】

基本介绍

对类来说的,即一个类应该只负责一项职责。如类A负责两个不同职责:职责 1,职责 2。当职责 1 需求变更
而改变A时,可能造成职责 2 执行错误,所以需要将类A的粒度分解为A1,A2

应用实例

以交通工具案例讲解

//方案 1 [分析说明]
package com.yan.principle.singleresponsibility;
public class SingleResponsibility1 {
    public static void main(String[] args) {
        Vehicle vehicle = new Vehicle();
        vehicle.run("摩托车");
        vehicle.run("汽车");
        vehicle.run("飞机");
    }
}
// 交通工具类
// 方式 1
// 1. 在方式 1 的 run 方法中,违反了单一职责原则
// 2. 解决的方案非常的简单,根据交通工具运行方法不同,分解成不同类即可
class Vehicle {
    public void run(String vehicle) {
        System.out.println(vehicle + " 在公路上运行....");
    }
}
//方案 2 [分析说明]
package com.yan.principle.singleresponsibility;
public class SingleResponsibility3 {
    public static void main(String[] args) {
        Vehicle2 vehicle2 = new Vehicle2();
        vehicle2.run("汽车");
        vehicle2.runWater("轮船");
        vehicle2.runAir("飞机");
    }
}
//1. 这种修改方法没有对原来的类做大的修改,只是增加方法
//2. 这里虽然没有在类这个级别上遵守单一职责原则,但是在方法级别上,仍然是遵守单一职责
class Vehicle2 {
    public void run(String vehicle) {
        //处理
        System.out.println(vehicle + " 在公路上运行....");
    }
    public void runAir(String vehicle) {
            System.out.println(vehicle + " 在天空上运行....");
    }
    public void runWater(String vehicle) {
        System.out.println(vehicle + " 在水中行....");
    }
    ....
}

单一职责原则注意事项和细节

1) 降低类的复杂度,一个类只负责一项职责。
2) 提高类的可读性,可维护性
3) 降低变更引起的风险
4) 通常情况下,我们应当遵守单一职责原则,只有逻辑足够简单,才可以在代码级违反单一职责原则;只有类中
方法数量足够少,可以在方法级别保持单一职责原则

【接口隔离原则】

基本介绍

1) 客户端不应该依赖它不需要的接口,即一个类对另一个类的依赖应该建立在最小的接口上
2) 类 A 通过接口 Interface1 依赖类 B,类 C 通过接口 Interface1 依赖类 D,如果接口 Interface1 对于类 A 和类 C
来说不是最小接口,那么类 B 和类D必须去实现他们不需要的方法。
3) 按隔离原则应当这样处理:
将接口 Interface1 拆分为独立的几个接口(这里我们拆分成 3 个接口),类A和类 C 分别与他们需要的接口建立
依赖关系。也就是采用接口隔离原则

应用实例

类A通过接口 Interface1 依赖类 B,类 C 通过接口 Interface1 依赖类D

package com.yan.principle.segregation;
public class Segregation1 {
public static void main(String[] args) {
// TODOAuto-generated method stub
}
}
//接口
interface Interface1 {
    void operation1();
    void operation2();
    void operation3();
    void operation4();
    void operation5();
}
class B implements Interface1 {
    public void operation1() {
        System.out.println("B 实现了 operation1");
    }
    public void operation2() {
        System.out.println("B 实现了 operation2");
    }
    public void operation3() {
        System.out.println("B 实现了 operation3");
    }
    public void operation4() {
        System.out.println("B 实现了 operation4");
    }
    public void operation5() {
        System.out.println("B 实现了 operation5");
    }
}
class D implements Interface1 {
    public void operation1() {
        System.out.println("D 实现了 operation1");
    }
    public void operation2() {
        System.out.println("D 实现了 operation2");
    }
    public void operation3() {
        System.out.println("D 实现了 operation3");
    }
    public void operation4() {
        System.out.println("D 实现了 operation4");
    }
    public void operation5() {
        System.out.println("D 实现了 operation5");
    }
}
class A { //A 类通过接口 Interface1 依赖(使用) B 类,但是只会用到 1,2,3 方法
    public void depend1(Interface1 i) {
        i.operation1();
    }
    public void depend2(Interface1 i) {
        i.operation2();
    }
    public void depend3(Interface1 i) {
        i.operation3();
    }
class C { //C 类通过接口 Interface1 依赖(使用) D类,但是只会用到 1,4,5 方法
    public void depend1(Interface1 i) {
        i.operation1();
    }
    public void depend4(Interface1 i) {
        i.operation4();
    }
    public void depend5(Interface1 i) {
        i.operation5();
    }
}

应传统方法的问题和使用接口隔离原则改进

1) 类 A 通过接口 Interface1 依赖类 B,类 C 通过接口 Interface1 依赖类 D,如果接口 Interface1 对于类 A 和类 C
来说不是最小接口,那么类 B 和类D必须去实现他们不需要的方法
2) 将接口 Interface1 拆分为独立的几个接口,类A和类 C 分别与他们需要的接口建立依赖关系。也就是采用接口
隔离原则
3) 接口 Interface1 中出现的方法,根据实际情况拆分为三个接口
package com.yan.principle.segregation.improve;
public class Segregation1 {
    public static void main(String[] args) {
        // TODOAuto-generated method stub
        // 使用一把
        A a = newA();
        a.depend1(new B()); // A类通过接口去依赖 B 类
        a.depend2(new B());
        a.depend3(new B());
        C c = new C();
        c.depend1(new D()); // C 类通过接口去依赖(使用)D类
        c.depend4(new D());
        c.depend5(new D());
    }
}
// 接口 1
interface Interface1 {
    void operation1();
}
// 接口 2
interface Interface2 {
    void operation2();
    void operation3();
}
// 接口 3
interface Interface3 {
    void operation4();
    void operation5();
}
class B implements Interface1, Interface2 {
    public void operation1() {
        System.out.println("B 实现了 operation1");
    }
    public void operation2() {
        System.out.println("B 实现了 operation2");
    }
    public void operation3() {
        System.out.println("B 实现了 operation3");
}
}
class D implements Interface1, Interface3 {
    public void operation1() {
        System.out.println("D 实现了 operation1");
    }
    public void operation4() {
        System.out.println("D 实现了 operation4");
    }
    public void operation5() {
        System.out.println("D 实现了 operation5");
}
}
class A { // A 类通过接口 Interface1,Interface2 依赖(使用) B 类,但是只会用到 1,2,3 方法
    public void depend1(Interface1 i) {
        i.operation1();
    }
    public void depend2(Interface2 i) {
        i.operation2();
    }
    public void depend3(Interface2 i) {
        i.operation3();
}
}
class C { // C 类通过接口 Interface1,Interface3 依赖(使用) D类,但是只会用到 1,4,5 方法
    public void depend1(Interface1 i) {
        i.operation1();
    }
    public void depend4(Interface3 i) {
        i.operation4();
    }
    public void depend5(Interface3 i) {
        i.operation5();
    }
}

【依赖倒转原则】

基本介绍

1) 高层模块不应该依赖低层模块,二者都应该依赖其抽象
2) 抽象不应该依赖细节,细节应该依赖抽象
3) 依赖倒转(倒置)的中心思想是面向接口编程
4) 依赖倒转原则是基于这样的设计理念:相对于细节的多变性,抽象的东西要稳定的多。以抽象为基础搭建的架
构比以细节为基础的架构要稳定的多。在 java 中,抽象指的是接口或抽象类,细节就是具体的实现类
5) 使用接口或抽象类的目的是制定好规范,而不涉及任何具体的操作,把展现细节的任务交给他们的实现类去完
成

应用实例

成 Person 接收消息 的功能

//实现方案 1
package com.yan.principle.inversion;
public class DependecyInversion {
}
class Email {
    public String getInfo() {
        return "电子邮件信息: hello,world";
    }
}
//完成 Person 接收消息的功能
//方式 1 分析
//1. 简单,比较容易想到
//2. 如果我们获取的对象是 微信,短信等等,则新增类,同时 Perons 也要增加相应的接收方法
//3. 解决思路:引入一个抽象的接口 IReceiver, 表示接收者, 这样 Person 类与接口 IReceiver 发生依赖
// 因为 Email, WeiXin 等等属于接收的范围,他们各自实现 IReceiver 接口就 ok, 这样我们就符号依赖倒转原则
class Person {
    public void receive(Email email ) {
        System.out.println(email.getInfo());
    }
}
//实现方案 2(依赖倒转)
package com.atguigu.principle.inversion.improve;
public class DependecyInversion {
    public static void main(String[] args) {
        //客户端无需改变
        Person person = new Person();
        person.receive(new Email());
        person.receive(newWeiXin());
    }
}
//定义接口
interface IReceiver {
    public String getInfo();
}
class Email implements IReceiver {
    public String getInfo() {
        return "电子邮件信息: hello,world";
    }
}
//增加微信
class WeiXin implements IReceiver {
    public String getInfo() {
        return "微信信息: hello,ok";
    }
}
//方式 2
class Person {
    //这里我们是对接口的依赖
    public void receive(IReceiver receiver ) {
        System.out.println(receiver.getInfo());
    }
}

依赖倒转原则的注意事项和细节

1) 低层模块尽量都要有抽象类或接口,或者两者都有,程序稳定性更好.
2) 变量的声明类型尽量是抽象类或接口, 这样我们的变量引用和实际对象间,就存在一个缓冲层,利于程序扩展
和优化
3) 继承时遵循里氏替换原则

【里氏替换原则】

OO中的继承性的思考和说明

1) 继承包含这样一层含义:父类中凡是已经实现好的方法,实际上是在设定规范和契约,虽然它不强制要求所有
的子类必须遵循这些契约,但是如果子类对这些已经实现的方法任意修改,就会对整个继承体系造成破坏。
2) 继承在给程序设计带来便利的同时,也带来了弊端。比如使用继承会给程序带来侵入性,程序的可移植性降低,
增加对象间的耦合性,如果一个类被其他的类所继承,则当这个类需要修改时,必须考虑到所有的子类,并且
父类修改后,所有涉及到子类的功能都有可能产生故障
3) 问题提出:在编程中,如何正确的使用继承? => 里氏替换原则

基本介绍

1) 里氏替换原则(Liskov Substitution Principle)在 1988 年,由麻省理工学院的以为姓里的女士提出的。
2) 如果对每个类型为 T1 的对象 o1,都有类型为 T2 的对象 o2,使得以 T1 定义的所有程序 P 在所有的对象 o1 都
代换成 o2 时,程序 P 的行为没有发生变化,那么类型T2 是类型 T1 的子类型。换句话说,所有引用基类的地
方必须能透明地使用其子类的对象。
3) 在使用继承时,遵循里氏替换原则,在子类中尽量不要重写父类的方法
4) 里氏替换原则告诉我们,继承实际上让两个类耦合性增强了,在适当的情况下,可以通过聚合,组合,依赖 来
解决问题。

【开闭原则】

基本介绍

1) 开闭原则(Open Closed Principle)是编程中最基础、最重要的设计原则
2) 一个软件实体如类,模块和函数应该对扩展开放(对提供方),对修改关闭(对使用方)。用抽象构建框架,用实
现扩展细节。
3) 当软件需要变化时,尽量通过扩展软件实体的行为来实现变化,而不是通过修改已有的代码来实现变化。
4) 编程中遵循其它原则,以及使用设计模式的目的就是遵循开闭原则。

应用实例

一个画图形的功能

//方案 1
package com.yan.principle.ocp;
public class Ocp {
    public static void main(String[] args) {
        //使用看看存在的问题
        GraphicEditor graphicEditor = new GraphicEditor();
        graphicEditor.drawShape(new Rectangle());
        graphicEditor.drawShape(new Circle());
        graphicEditor.drawShape(new Triangle());
    }
}
//这是一个用于绘图的类 [使用方]
class GraphicEditor {
    //接收 Shape 对象,然后根据 type,来绘制不同的图形
    public void drawShape(Shape s) {
        if (s.m_type == 1)
            drawRectangle(s);
        else if (s.m_type == 2)
            drawCircle(s);
        else if (s.m_type == 3)
            drawTriangle(s);
    }
    //绘制矩形
    public void drawRectangle(Shape r) {
        System.out.println(" 绘制矩形 ");
    }
    //绘制圆形
    public void drawCircle(Shape r) {
    }
    //绘制三角形
    public void drawTriangle(Shape r) {
        System.out.println(" 绘制三角形 ");
    }
}
//Shape 类,基类
class Shape {
    int m_type;
}
class Rectangle extends Shape {
    Rectangle() {
        super.m_type = 1;
    }
}
class Circle extends Shape {
    Circle() {
        super.m_type = 2;
    }
}
//新增画三角形
class Triangle extends Shape {
    Triangle() {
        super.m_type = 3;
    }
}
//方案 2
package com.yan.principle.ocp.improve;
public class Ocp {
    public static void main(String[] args) {
        //使用看看存在的问题
        GraphicEditor graphicEditor = new GraphicEditor();
        graphicEditor.drawShape(new Rectangle());
        graphicEditor.drawShape(new Circle());
        graphicEditor.drawShape(new Triangle());
        graphicEditor.drawShape(new OtherGraphic());
    }
}
//这是一个用于绘图的类 [使用方]
class GraphicEditor {
    //接收 Shape 对象,调用 draw方法
    public void drawShape(Shape s) {
        s.draw();
    }
}
//Shape 类,基类
abstract class Shape {
    int m_type;
}
class Rectangle extends Shape {
    Rectangle() {
        super.m_type = 1;
    }
    @Override
    public void draw() {
        // TODOAuto-generated method stub
        System.out.println(" 绘制矩形 ");
    }
}
class Circle extends Shape {
    Circle() {
        super.m_type = 2;
    }
    @Override
    public void draw() {
        // TODOAuto-generated method stub
        System.out.println(" 绘制圆形 ");
    }
}
//新增画三角形
class Triangle extends Shape {
    Triangle() {
        super.m_type = 3;
    }
    @Override
    public void draw() {
        // TODOAuto-generated method stub
        System.out.println(" 绘制三角形 ");
    }
}
//新增一个图形
class OtherGraphic extends Shape {
    OtherGraphic() {
        super.m_type = 4;
    }
    @Override
    public void draw() {
        // TODOAuto-generated method stub
        System.out.println(" 绘制其它图形 ");
    }
}

【迪米特法则】

基本介绍

1) 一个对象应该对其他对象保持最少的了解
2) 类与类关系越密切,耦合度越大
3) 迪米特法则(Demeter Principle)又叫最少知道原则,即一个类对自己依赖的类知道的越少越好。也就是说,对于
被依赖的类不管多么复杂,都尽量将逻辑封装在类的内部。对外除了提供的 public 方法,不对外泄露任何信息
4) 迪米特法则还有个更简单的定义:只与直接的朋友通信
5) 直接的朋友:每个对象都会与其他对象有耦合关系,只要两个对象之间有耦合关系,我们就说这两个对象之间
是朋友关系。耦合的方式很多,依赖,关联,组合,聚合等。其中,我们称出现成员变量,方法参数,方法返
回值中的类为直接的朋友,而出现在局部变量中的类不是直接的朋友。也就是说,陌生的类最好不要以局部变
量的形式出现在类的内部。

应用实例

有一个学校,下属有各个学院和总部,现要求打印出学校总部员工 ID和学院员工的 id

package com.yan.principle.demeter;
import java.util.ArrayList;
import java.util.List;
//客户端
public class Demeter1 {
    public static void main(String[] args) {
        //创建了一个 SchoolManager 对象
        SchoolManager schoolManager = new SchoolManager();
        //输出学院的员工 id 和 学校总部的员工信息
        schoolManager.printAllEmployee(new CollegeManager());
    }
}
//学校总部员工类
class Employee {
    private String id;
    public void setId(String id) {
        this.id = id;
    }
    public String getId() {
        return id;
    }
}
//学院的员工类
class CollegeEmployee {
    private String id;
    public void setId(String id) {
        this.id = id;
    }
    public String getId() {
        return id;
    }
}
//管理学院员工的管理类
class CollegeManager {
    //返回学院的所有员工
    public List<CollegeEmployee> getAllEmployee() {
        List<CollegeEmployee> list = newArrayList<CollegeEmployee>();
        for (int i = 0; i < 10; i++) { //这里我们增加了 10 个员工到 list
            CollegeEmployee emp = new CollegeEmployee();
            emp.setId("学院员工 id= " + i);
            list.add(emp);
        }
        return list;
    }
}
//学校管理类
//分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
//CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则
class SchoolManager {
    //返回学校总部的员工
    public List<Employee> getAllEmployee() {
        List<Employee> list = newArrayList<Employee>();
        for (int i = 0; i < 5; i++) { //这里我们增加了 5 个员工到 list
            Employee emp = new Employee();
            emp.setId("学校总部员工 id= " + i);
            list.add(emp);
        }
        return list;
    }
    //该方法完成输出学校总部和学院员工信息(id)
    void printAllEmployee(CollegeManager sub) {
        //分析问题
        //1. 这里的 CollegeEmployee 不是 SchoolManager 的直接朋友
        //2. CollegeEmployee 是以局部变量方式出现在 SchoolManager
        //3. 违反了 迪米特法则
        //获取到学院员工
        List<CollegeEmployee> list1 = sub.getAllEmployee();
        System.out.println("------------学院员工------------");
        for (CollegeEmployee e : list1) {
            System.out.println(e.getId());
        }
        //获取到学校总部员工
        List<Employee> list2 = this.getAllEmployee();
        System.out.println("------------学校总部员工------------");
        for (Employee e : list2) {
            System.out.println(e.getId());
        }
    }
}
//前面设计的问题在于 SchoolManager 中,CollegeEmployee 类并不是 SchoolManager 类的直接朋友 (分析)
//按照迪米特法则,应该避免类中出现这样非直接朋友关系的耦合
package com.yan.principle.demeter.improve;
import java.util.ArrayList;
import java.util.List;
//客户端
public class Demeter1 {
    public static void main(String[] args) {
        System.out.println("~~~使用迪米特法则的改进~~~");
        //创建了一个 SchoolManager 对象
        SchoolManager schoolManager = new SchoolManager();
        //输出学院的员工 id 和 学校总部的员工信息
        schoolManager.printAllEmployee(new CollegeManager());
    }
}
//学校总部员工类
class Employee {
    private String id;
    public void setId(String id) {
        this.id = id;
    }
    public String getId() {
        return id;
    }
}
//学院的员工类
class CollegeEmployee {
    private String id;
    public void setId(String id) {
        this.id = id;
    }
    public String getId() {
        return id;
    }
}
//管理学院员工的管理类
class CollegeManager {
    //返回学院的所有员工
    public List<CollegeEmployee> getAllEmployee() {
        List<CollegeEmployee> list = newArrayList<CollegeEmployee>();
        for (int i = 0; i < 10; i++) { //这里我们增加了 10 个员工到 list
            CollegeEmployee emp = new CollegeEmployee();
            emp.setId("学院员工 id= " + i);
            list.add(emp);
        }
        return list;
    }
    //输出学院员工的信息
    public void printEmployee() {
        //获取到学院员工
        List<CollegeEmployee> list1 = getAllEmployee();
        System.out.println("------------学院员工------------");
        for (CollegeEmployee e : list1) {
            System.out.println(e.getId());
        }
    }
}
//学校管理类
//分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
//CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则
class SchoolManager {
    //返回学校总部的员工
    public List<Employee> getAllEmployee() {
    }
    //该方法完成输出学校总部和学院员工信息(id)
    void printAllEmployee(CollegeManager sub) {
        //分析问题
        //1. 将输出学院的员工方法,封装到 CollegeManager
        sub.printEmployee();
        //获取到学校总部员工
        List<Employee> list2 = this.getAllEmployee();
        System.out.println("------------学校总部员工------------");
        for (Employee e : list2) {
            System.out.println(e.getId());
        }
    }
}

迪米特法则注意事项和细节

1) 迪米特法则的核心是降低类之间的耦合
2) 但是注意:由于每个类都减少了不必要的依赖,因此迪米特法则只是要求降低类间(对象间)耦合关系, 并不是
要求完全没有依赖关系

【合成复用原则】

基本介绍

合成复用原则是尽量使用合成/聚合的方式,而不是使用继承

1) 找出应用中可能需要变化之处,把它们独立出来,不要和那些不需要变化的代码混在一起。
2) 针对接口编程,而不是针对实现编程。
3) 为了交互对象之间的松耦合设计而努力

施工中...

您的喜欢是作者写作最大的动力!❤️
  • PayPal
  • AliPay
  • WeChatPay
  • QQPay
YAN